APPLICATION OF THE VARIATION METHOD TO THE
PROBLEM OF THERMOMOLECULAR PRESSURE
DIFFERENCE IN A CYLINDRICAL CHANNEL
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The problem of thermomolecular pressure difference in a round capillary tube is solved
by the variation method for thé linearized BGK model. Purely diffusive dispersion of
gaseous molecules at the capillary walls is stipulated in the boundary conditions, The
results are compared with test data.

The problem of thermomolecular pressure difference arises, as a rule, during pressure measure-
ments in systems where the temperature is not the same as the temperature of the pressure probes. The
correction which must then be added to the instrument readings to account for this thermomolecular pres-
sure difference may, at a sufficiently large temperature drop and high Knudsen number, amount to a high
percentage of the mean pressure in the system. This does obviously explain why many researchers are so
concerned about the problem, It is to be noted, however, that until now the problem of thermomolecular
pressure difference was treated semiempirically and that only the extreme cases of viscous or free-mole-
cular conditions have been analyzed theoretically,

In this study here the authors will solve the problem for any value of the Knudsen number (Kn denoting
the ratio of mean free path A to capillary radius R), For the solution, we apply the variation method [1] to
the linearized BGK model, which, when diffusive reflection of molecules at the capillary walls is assumed,
will, according to Sone and Yamamoto [2], transform into a linear integral equation with respect to the di-
mensionless velocity of the average molecule u:
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p(z) and T (z) denote respectively the pressure and the temperature, s denotes the cross section area of a
capillary, and r denotes the radial coordinate,

A linearization of the problem will make it possible to represent the average velocity u as a simple
sum of two independent velocities u; and u, due to the pressure gradient and the temperature gradient re-
spectively:

U = Uy - Uy. 2)

With (2) taken into account, Eq. {1) splits into two independent integral equations:
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TABLE 1, Numerical Values of y

[ " Q v [ Q v
0 1,5045° 0,5 0,5 1,3863 0,3008
0,000t 1,5043 0,4996 0,6 1,3971 0,2808
© 0,001 1,4996 0,4979 0,7 1,4101 0,2632
0,01 1,4763 0,4862 0,8 1,4247 06,2475
0,02 1,4603 0,4765 0.9 1,4406 0,2334
0,03 1,4483 0,4681 1 1,4576 0,2205
0,04 1,4386 0,4608 2 1,6559 0,1369
0,05 1,4305 0,4540 3 1.8772 0,0938
0,06 1,4236 0,4477 4 2,1079 0,0683
0,07 1,4177 0,4417 5 2.3438 0,0519
0,08 1,4125 0,4361 6 2,5831 0,0408
0,09 1,4079 0,4307 7 2.8246 0,0328
0.1 1,4039 0,4256 8 3.0677 0,0270-
0,2 1,3815 0,3832 9 3,3121 0,0226
0,3 1,3760 0,3505 10 3,5574 0,0192
0,4 1,3788 0,3236
for the average velocities u (i = 1) and uﬁ(i =2). Here
i—=1,
o _ @)
O, (n . g‘ 6|r r') ar, i=2
Ir—r'|
(s)
u, = — [l +¥] u R ¥,1.
! 2,5 ’ L ()
According to the general rules of variational calculus, we set up the following functionals for Egs. (3):
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It can be easily shown that each functional in (6) becomes minimum as soon as the trial functions \Il, repre-
sent the exact solutions to Eqs. (3). The referred flow rates Q; due to the pressure gradient and Q, due to
the temperature gradient are related to the functionals (6) as follows:
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where the { )symbol denotes averaging over the capillary section,

The choice of quadratic trial functions 31 = Ajr? + Bj and the subsequent minimization of functionals
(6) with respect to the unknown coefficients A;, Bj leads, after a few simplifications, to the following ex-
pressions for the referred flow rates:
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Y The integrals
1
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may be calculated to any desirable accuracy, by using the
43 X asymptotic representation of function J, [3].
s~
2:5 Ox\ It is to be noted that the results obtained by the variation
a2 o } i meéthod agree closely with the numerical solution obtained by
ﬁ_‘_s Loyalka [4] (the maximum discrepancy between both solutions
, | zeso is 0.15%, when 6 ~ 1),
"
\<< | xoze Under stabilized steady conditions the total average velo-
, o city (up = {u) + {u,) vanishes. Then we have the expression
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Fig. 1. Comparison between the . P T Q9
theoretical y-curve and test data which, when integrated from p,, Ty, to py, T, along the capillary,
for: 1) Hy, 2) Ne, 3) Xe, 4) Ar, 5) yields a simple relation for the effect of thermomolecular pres-
He at a smocth surface, 6) He at a sure difference:
rough surface, : ok ,TL)V
p;) (\ Tz 7 ’ (11)

In the case of free-molecular conditions we have (6 = 0) = 0.5, i.e,, the well known Knudsen formula
applies; in the other extreme case of a continuous medium we have v (§ — ) = 0; there is no thermomole-
cular effect. Numerical values of v for 5 from 0 fo 10 have been tabulated,

A comparison between the theoretical results obtained for a capillary tube and for a plane gap [5] in-
dicates a weak dependence of the thermomolecular effect on the geometry of the channel section.

The theoretical y-curve is compared in Fig. 1 with the test data in [6] and in [7]. We note a very
close agreement (within test accuracy) for heavy gases (Xe, Ar) over the entire test range of the Knudsen
number,

In the case of light gases, however, the maximum discrepancy between theoretical and test values
under free-molecular conditions is as high as 5% for H,, 10% for Ne, and 189 for He at a Knudsen number
Kn 3102, which can, apparently, be explained by the different character of the interaction between gas
and capillary surface. This conclusion is based on a comparison between Hobson's test data for He in
capillaries with smooth and rough surfaces respectively.

On the basis of this discussion, we conclude that the functional relation derived here for the thermo-
molecular pressure difference is correct, which permits us to recommend this relation (11) for the cal-
culatmn of the thermomolecular effect over the entire range of the Knudsen number,

If two volumes of a gas V; and V, at different temperatures T, and T, respectlvely are connected
through a capillary tube with a radius R and length L, then the requirement that the number of particles
in'a system remain conserved will easily yield the law according to which the thermomolecular pressure

difference varies with time: _
v o Qe [ RS [ 2kT \in
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where 1/V =1/Vy +1/V,, k is the Boltzmann constant, and m denotes the mass of molecules.
1t follows from (12) that the relaxation time of the process is
- VL m \12
Tr = .
nR%Q, ( 2kT )

Values of @ for various values of § are given in Table 1,

Formulas (11) and (12) together with Table 1 are useful for practical calculations of the thermo-
molecular pressure difference and the relaxation time, for any gas and for tubes with any cross section.

311



Wi = w09
!

g

FEHumOT B *
£

312

(1/p)dP /dz;
(1/T)a1/ dz;

NOTATION

is the index of the effect of thermomolecular pressure difference;
is the rarefaction number for a gas;
is the mean free path of gas molecules;

are the trial functions; -

is the functional for the integral equation;
is the Knudsen number;

is the Boltzmann constant;

is the mass of molecules;

is the pressure;

are the referred flow due to the pressure and temperature gradient;
is the capillary radius;

is the cross-sectional area;

is the temperature;

is the velocity of an average molecule.
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